K-2 Developing Algebraic Thinking

Drew Pollyl Marta Garcia

Goals

Explore and discuss tasks related to algebraic reasoning in Grades K-2.

Analyze student responses to tasks

Connection to Standards for Math Practice

SMP 2 Reason abstractly and quantitatively Quantitative reasoning entails habits of creating a coherent representation of the problem at hand
For example, when a student sees the expression $40+26$, she might visualize this problem by thinking, if I have 26 marbles and Marie has 40 , how many more do I need to have as many as Marie? Then, in that context, she thinks, 4 more will get me to a total of 30 , and then 10 more will get me to 40 , so the answer is 14.

Connection to Math Practice 2

How are students decontextualizing? How do they choose a solution path that may or may not match the structure of the problem and the referents?

How are students contextualizing ? How do students wrap numbers in a context? How do they pause during/after computation to probe into the referents?

Let's explore:

Solve the following using representations and equations.

Max had 3 blocks. He found some more blocks. Then he had 7 blocks. How many blocks did he find?

Max's Blocks

Representations?

Equations?

Max's Blocks

Is there an action and if so, what is the action of the problem?

What are some possible student errors?

Zenobia

How did Zenobia think about the problem?
What teacher moves would support Zenobia in productive struggle?

Let's explore:

Turn to a partner. How would a student use counters or cubes to solve this task?

Max had 3 blocks. He found some more blocks. Then he had 7 blocks. How many blocks did he find?

Zenobia
How did Zenobia think about the problem?
What teacher moves would support Zenobia in
productive struggle?

Zenobia's Teacher

Then I wondered if making a connection to something more familiar would help her, so I brought her back to another activity, one at which she is routinely successful.

[^0]Zenobia thought and said, "Four."

I asked, "Does it remind you of anything we've just been doing?"

Zenobia replied, "Not really."

I said, "OK, then let’s pretend that Max was playing 'How Many Am I Hiding?' He could see 3. Some were behind his friend’s back. He knew the total was 7 . How many were hiding?"

Zenobia thought and then said, "Four."

I asked, "OK, so do you see any connections between this problem and the other Max problem?"

She said, "Yes, there's a 3 and a 7. I just don’t get it, still."

Let's reflect with the teacher...

For me, the connection between the story problem and the "How Many Am I Hiding?" game seems so obvious.

What is the connection Zenobia needs to make? And what about her classmates?

I am thinking about how to start a class discussion to see what ideas students might have about the connections between the game and the story problems.

Operations and Algebraic Thinking

The Progression in Operations and Algebraic Thinking deals with the basic operations-the kinds of quantitative relationships they model and consequently the kinds of problems they can be used to solve as well as their mathematical properties and relationships.

Let's explore:

Solve the following using representations and equations:

Bill has some trucks. He gave 7 away. Now Bill has 8 trucks. How many trucks did Bill have?

Bill's Trucks

Representations?
Equations?

Bill's Teacher

When I approached Bill's desk he had a pile of 8 counters total. I asked him, "How are you going to solve the task?" he counted out 7 counters and put them in a pile so he had a pile of 7 and a pile of 1.

Crayon Puzzles

There are 8 crayons. Some are red and some are blue. How many of each could we have? Find all the possible answers.

Crayon Puzzles

Representations?
Equations?

Crayon Puzzles

What is the action of the problem?
I have 8 crayons... what should the student do? Some are red and some are blue... how would students explore this idea?

Carol's Candies

Carol had 8 pieces of candy. She had 5 pieces of candy fewer than Steve. How many pieces of candy did Steve have?

Carol's Candies

Representations?
Actions?

Carol's Candies

Bobby starts to solve this problem by making a pile of 8 counters. He then says, "fewer means A progression of comparing...

If I have fewer, what do you have? If you have more, what do I have? the number goes down." He takes away 5 counters and says, "the answer is 3."

What is Bobby doing?
What teacher moves would support Bobby in productive struggle?

Fewer and More

Who has more? How much more?
Ann \because O \because Julio \because Who ras rower? How much fever?

Fewer and More

Maria has 12 cubes. Ann has more. How many cubes could Ann have?

Ryan has 23 marbles. Mark has fewer. How many marbles could mark have?

Unpacking a problem...

\rightarrow What is the referent?
\rightarrow What is the language variant?
\rightarrow What relationship is present between quantities?
\rightarrow How might students use the inverse relationship between addition and subtraction to generate a solution strategy?

Explore these!

Samuel has 5 more pencils than Nancy. Nancy has 6 pencils. How many pencils does Samuel have?

Ike has 4 fewer erasers than Gina. Ike has 5 erasers. How many erasers does Gina have?

Problem Types Resource

http://cgimathtasks.pbworks.com/

Elemath.pbworks.com

Tieing it All Together-similarities and differences?

\square Change Unknown
\square Start Unknown
\square Both Addends Unknown
\square Compare- Bigger Unknown/More Version
Compare- Fewer Unknown/ Fewer Version
Compare- Bigger Unknown/Fewer Version

- Compare- Fewer Unknown/More Version

Addition and subtraction are the first operations studied.
Initially, the meaning of addition is separate from the meaning of subtraction, and students build relationships between addition and subtraction over time.

Subtraction comes to be understood as reversing the actions involved in addition and as finding an unknown addend.

Comments and questions?

Marta: martagarcia0901@gmail.com
Drew: drew.polly@uncc.edu

[^0]: I said, "Let's put this aside for a moment and solve another problem. Pretend that you and I are playing 'How Many Am I Hiding?' We're playing with 6 cubes. I have some behind my back. You can see 2. You know that there are 6 cubes all together. How many am I hiding?"

