Bar Diagrams for Operations - *enVisionMATH* #### Randall I. Charles #### **Bar Diagrams for Addition and Subtraction Situations** | Problem Type
Joining | Example A
Total Amount Unknown | Example B
Amount Joined Unknown | Example C
Initial Amount Unknown | |--|---|---|---| | Ü | Kim has 23 antique dolls. Her Father gives her 18 more antique dolls. Now how many antique dolls does she have? | Debbie has saved \$57. How much more money does she need in order to have \$112? | Tom had some money in his savings account. He then deposited \$45 into the same account. Then he had \$92 in all. How much did he have in his savings account to start? | | Diagram
Showing the
Relationship | 23 18 | 57 ? | ? 45 | | Description of
the Relationship | The two unequal amounts (23 and 18) are known and being joined and the total is unknown. | The initial amount is known (57). The amount being joined to that is unknown. The total is known (112). | The initial amount is unknown. The amount being joined to that is known (45) and the total is known (92). | | Number
Sentence | 23 + 18 = ? | 57 + ? = 112
112 - 57 = ? | ? + 45 = 92
92 - 45 = ? | | Problem Type | Example D Amount Remaining Unknown | Example E
Amount Separated | Example F
Initial Amount Unknown | | Problem Type
Separating | Example D
Amount Remaining Unknown | Example E
Amount Separated
Unknown | Example F
Initial Amount Unknown | |--|--|---|---| | | Steven has 122 jelly beans. He eats 71 of them in one weekend. How many jelly beans are left? | Carrie has 45 CDs. She gives some to Jo. Now Carrie has 27 left. How many did she give to Jo? | Alan has some marbles. He lost 12 of them. Then he had 32 left. How many did he have before he lost some? | | Diagram
Showing the
Relationship | 71 ? | ? 45 | | | Description of
the Relationship | The total amount is known (122) and the amount separated from that is known (71). The amount remaining is unknown. | The total amount is known (45) and the amount separated from that is unknown. The amount remaining is known (27). | The total is unknown. The amount separated from the total is known (12) and the amount remaining is known (32). | | Number
Sentence | 122 – 71 = ? | 45 - ? = 27
27 + ? = 45 | ? - 12 = 32
12 + 32 = ? | #### **Bar Diagrams for Addition and Subtraction Situations** | Problem Type | Example G
Whole Unknown | Example H
One Part Unknown | Example I
Another Part Unknown | |--|--|--|---| | Part-Part-
Whole | Fourteen cats and 16 dogs are in the kennel. How many dogs and cats are in the kennel? | Some adults and 12 children were on a bus. There are 31 people in all on the bus. How many adults were on the bus? | Forty-nine people went on a hike. Six were adults and the rest were children. How many children went on the hike? | | Diagram
Showing the
Relationship | | ? 12 | 6 ? | | Description of
the Relationship | Each unequal part is known (14 and 16); the whole is unknown. | The first part is unknown, but the second part is known (12). The whole is known (31). | The whole is known (49) and the initial part is known (6). The other part is unknown. | | Number
Sentence | 14 + 16 = ? | ? + 12 = 31
31 - 12 = ? | 6 + ? = 49
49 - 6 = ? | | Problem Type
Comparison | Example J
Amount More (or Less)
Unknown | Example K
Smaller Amount Unknown | Example L
Larger Amount Unknown | |------------------------------------|--|---|---| | | Alex has 47 toy cars. Keisha has 12 cars. How many more cars does Alex have? | Fran spent \$84 which was \$26 more than Alice spent. How much did Alice spend? | Barney has 23 old coins. Steve has 16 more old coins than Barney. How many old coins does Steve have? | | Diagram Showing the Relationship | 12 ? | ? 26 | 23 16 | | Description of
the Relationship | Two known amounts (47 and 12) are being compared. The amount more/less is unknown. | The larger amount is known (84), and smaller amount is unknown. The amount more the larger is than the smaller is known (26). | One smaller amount is known (23), and the larger amount is not known. The amount more the larger is than the smaller is known (16). | | Number
Sentence | 47 – 12 = ? | 84 - ? = 26
84 - 26 = ? | 23 + 16 = ?
? - 23 = 16 | ### $\label{eq:BarDiagrams} \textbf{Bar Diagrams for Multiplication and Division Situations}$ | | Example M
Total Amount Unknown | Example N
Amount per Group
Unknown | Example O
Number of Groups
Unknown | |---|--|--|---| | Problem Type
Joining Equal
Groups | Kim has 4 photo albums. Each album has 85 pictures. How many photos are in her 4 albums? | Pam had 4 bags and put the same number of apples in each bag. She ended up with 52 apples in bags. How many did she put in each bag? | Fred bought some books that each cost \$16. He spent \$80 altogether. How many books did he buy? | | Diagram Showing the
Relationship | 85 85 85 85
85 85 85 | ? ? ? ? | 16 | | Description of the
Relationship | Four equal known amounts (85) are being joined to find the unknown total. | A known number (4) of unknown but equal amounts are being joined to give a known total (52). | A known amount (16) is being joined an unknown number of times to itself to get a known total (80). | | Number Sentence | 4 x 85 = ? | 4 x ? = 52
52 ÷ 4 = ? | ? $ x 16 = 80 $
$80 \div 16 = ? $ | | Problem Type
Separating | Example P
Amount per Group
Unknown | Example Q
Number of Groups
Unknown | Example R
Total Amount Unknown | |-------------------------------------|--|---|---| | Equal Groups | Byron has 45 pigeons. He keeps them in 5 pens with the same number of pigeons in each. How many pigeons are in each pen? | A total of 108 children signed
up for soccer. How many 18-
person teams can be made? | Kim had some cards. She put
them into piles of 35 and was
able to make 4 piles. How
many cards did she have to
start? | | Diagram Showing the
Relationship | 7 7 7 7 7 | 18 | 35 35 35 35 | | Description of the
Relationship | The total is known (45) and being separated into a known number of equal groups (5) but the amount in each group is unknown. | The total is known (108) and being separated into equal groups of a known amount (18). The number of equal groups needed to match the total is unknown. | The total amount is unknown. It is separated into a known number of groups (4) with a known equal amount in each (35). | | Number Sentence | $45 \div 5 = ?$ | 216 ÷ 18 = ?
18 x ? = 216 | ? ÷ 4 = 35
4 x 35 = ? | ## **Bar Diagrams for Multiplication and Division Situations** | Problem Type | Example S
Larger Amount Unknown | Example T
Smaller Amount Unknown | Example U
Number of Times as Many
Unknown | |-------------------------------------|---|--|--| | Comparison | Alex has 17 toy cars. Keisha
has 3 times as many. How
many cars does Keisha have? | Barney has 24 old coins. This is 3 times more coins than Steve has. How many old coins does Steve have? | Ann's teacher is 39 years old.
Ann is 13 years old. Ann's
teacher is how many times as
old as Ann? | | Diagram Showing the
Relationship | ? 17 17 17 3 times as many | ? ? ? 3 times as many | 39 13 | | Description of the
Relationship | The smaller amount is known (17) and the larger amount is a given number of times more (3). The larger quantity is not known. | The larger amount is known (24) and is a given number of times greater than the small amount (3). The smaller amount is not known. | The larger amount (39) and the smaller amount (13) are known. How many times more the larger amount is than the smaller amount is not known. | | Number Sentence | 3 x 17 = ? | $3 \times ? = 24$
$24 \div 3 = ?$ | ? $\times 13 = 39$
39 ÷ 13 = ? |